All Issue

2018 Vol.43, Issue 4 Preview Page
December 2018. pp. 394-400
Abstract

Purpose: This research evaluated five types of nanoparticles to develop a surface-enhanced Raman spectroscopy (SERS) method for the rapid detection of two Bacillus species (Bacillus cereus and Bacillus thuringiensis) that are commonly found on fresh produce, which can cause food poisoning. Methods: Bacterial concentrations were adjusted to a constant turbidity, and a total of 30 μL of each Bacillus cell suspension was prepared for each nanoparticle. A point-scan Raman system with laser light source of wavelength 785 nm was used to obtain SERS data. Results: There was no qualitative difference in the SERS data of B. cereus and B. thuringiensis for any of the five nanoparticles. Three gold nanoparticles, stabilized in either citrate buffer or ethanol, showed subtle differences in Raman intensities of two Bacillus species at 877.7 cm-1. Conclusions: Among the three types of nanoparticles, the gold nanoparticles stabilized in citrate buffer showed the lowest standard deviation, followed by gold nanoparticles stabilized in ethanol. This result supports the potential application of gold nanoparticles for SERS-based detection of B. cereus and B. thuringiensis.

References
  1. Ankolekar, C., T. Rahmati and R.G. Labbé. 2009. Detection of toxigenic Bacillus cereus and Bacillus thuringiensis spores in U.S. rice. International Journal of Food Microbiology 128(3): 460-466. http://doi.org/10.1016/j.ijfoodmicro.2008.10.00610.1016/j.ijfoodmicro.2008.10.006
  2. Burnett, S.L. and L.R. Beuchat. 2001. Human pathogens associated with raw produce and unpasteurized juices, and difficulties in decontamination. Journal of Industrial Microbiology & Biotechnology 27(2): 104-110. http://doi.org/10.1038/sj.jim.700019910.1038/sj.jim.7000199
  3. Centers for Disease Control and Prevention (CDC). 2017. Surveillance for Foodborne Disease Outbreaks, United States, 2015, Annual Report. Atlanta, Georgia: US Department of Health and Human Services, CDC. Available at: www.cdc.gov (2018.7.18)
  4. Kahraman, M., M.M. Yazıcı, F. Şahin and M. Çulha. 2008. Convective assembly of bacteria for surface- enhanced Raman scattering. Langmuir 24(3): 894-901. http://doi.org/10.1021/la702240q10.1021/la702240q
  5. Kalasinsky, K.S., T. Hadfield, A.A. Shea, V.F. Kalasinsky, M.P. Nelson, J. Neiss, A.J. Drauch, G.S. Vanni and P.J. Treado. 2007. Raman chemical imaging spectroscopy reagentless detection and identification of pathogens: signature development and evaluation. Analytical Chemistry 79(7): 2658-2673. http://doi.org/10.1021/ac070057510.1021/ac0700575
  6. Khatami, M., H.Q. Alijani, M.S. Nejad and R.S. Varma. 2018. Core@shell nanoparticles: greener synthesis using natural plant products. Applied Sciences 8(3): 411. http://doi.org/10.3390/app803041110.3390/app8030411
  7. Li, F., S. Zuo, P. Yu, B. Zhou, L. Wang, C. Liu, H. Wei and H. Xu. 2016. Distribution and expression of the enterotoxin genes of Bacillus cereus in food products from Jiangxi Province, China. Food Control 67: 155-162. http://doi.org/10.1016/j.foodcont.2016.02.04910.1016/j.foodcont.2016.02.049
  8. Ministry of Food and Drug Safety (MFDS). 2018. Food poisoning outbreak DB. Available at:www.foodsafetykorea.go.kr (2018.7.18)
  9. Mosier-Boss, P.A. 2017. Review on SERS of Bacteria. Biosensors 7(4): 51. http://doi.org/10.3390/bios704005110.3390/bios7040051
  10. Organji, S.R., H.H. Abulreesh, K. Elbanna, G.E.H. Osman and M. Khider. 2015. Occurrence and characterization of toxigenic Bacillus cereus in food and infant feces. Asian Pacific Journal of Tropical Biomedicine 5(7): 515-520. http://doi.org/10.1016/j.apjtb.2015.04.00410.1016/j.apjtb.2015.04.004
  11. Pahlow, S., S. Meisel, D. Cialla-May, K. Weber, P. Rösch and J. Popp. 2015. Isolation and identification of bacteria by means of Raman spectroscopy. Advanced Drug Delivery Reviews 89: 105-120. http://doi.org/10.1016/j.addr.2015.04.00610.1016/j.addr.2015.04.006
  12. Pang, S., T. Yang and L. He. 2016. Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides. Trends in Analytical Chemistry 85: 73-82. http://doi.org/10.1016/j.trac.2016.06.01710.1016/j.trac.2016.06.017
  13. Premasiri, W.R., J.C. Lee, A. Sauer-Budge, R. Théberge, C.E. Costello and L.D. Ziegler. 2016. The biochemical origins of the surface-enhanced Raman spectra of bacteria: a metabolomics profiling by SERS. Analytical and Bioanalytical Chemistry 408(17): 4631-4647.http://doi.org/10.1007/s00216-016-9540-x10.1007/s00216-016-9540-x
  14. Qin, J., K. Chao and M.S. Kim. 2010. Raman chemical imaging system for food safety and quality inspection. Transactions of the ASABE 53(6): 1873-1882. http://doi.org/10.13031/2013.3579610.13031/2013.35796
  15. Schmidt, M.S., J. Hübner and A. Boisen. 2012. Large area fabrication of leaning silicon nanopillars for surface enhanced Raman spectroscopy. Advanced Optical Materials 24(10): OP11-OP18. http://doi.org/10.1002/adma.20110349610.1002/adma.201103496
  16. Sharma, B., R.R. Frontiera, A.-I. Henry, E. Ringe and R.P. Van Duyne. 2012. SERS: materials, applications, and the future. Materials Today 15(1-2): 16-25. http://doi.org/10.1016/S1369-7021(12)70017-210.1016/S1369-7021(12)70017-2
  17. Sundaram, J., B. Park, A.H. Jr., K.C. Lawrence and Y. Kwon. 2013. Detection and differentiation of Salmonella serotypes using surface enhanced Raman scattering (SERS) technique. Food Measure 7(1): 1-12. http://doi.org/10.1007/s11694-012-9133-010.1007/s11694-012-9133-0
  18. Vilas-Bôas, G.T., A.P.S. Peruca and O.M.N. Arantes. 2007. Biology and taxonomy of Bacillus cereus, Bacillus anthracis, and Bacillus thuringiensis. Canadian Journal of Microbiology 53(6): 673-687. http://doi.org/10.1139/W07-02910.1139/W07-029
  19. Wang, P., S. Pang, J. Chen, L. McLandsborough, S.R. Nugen, M. Fan and L. He. 2016. Label-free mapping of single bacterial cells using surface-enhanced Raman spectroscopy. Analyst 141(4): 1356-1362. http://doi.org/10.1039/C5AN02175H10.1039/C5AN02175H
  20. Yang, D., H. Zhou, C. Haisch, R. Niessner and Y. Ying. 2016a. Reproducible E. coli detection based on label-free SERS and mapping. Talanta 146: 457-463. http://doi.org/10.1016/j.talanta.2015.09.00610.1016/j.talanta.2015.09.006
  21. Yang, T., Z. Zhang, B. Zhao, R. Hou, A. Kinchla, J.M. Clark and L. He. 2016b. Real-time and in situ monitoring of pesticide penetration in edible leaves by surface- enhanced Raman scattering mapping. Analytical Chemistry 88(10): 5243-5250. http://doi.org/10.1021/acs.analchem.6b0032010.1021/acs.analchem.6b00320
  22. Zhang, H., X. Ma, Y. Liu, N. Duan, S. Wu and Z. Wang. 2015. Gold nanoparticles enhanced SERS aptasensor for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus. Biosensors and Bioelectronics 74: 872-877. http://doi.org/10.1016/j.bios.2015.07.03310.1016/j.bios.2015.07.033
  23. Zhou, Y., Y. Kong, S. Kundu, J.D. Cirillo and H. Liang. 2012. Antibacterial activities of gold and silver nanoparticles against Escherichia coli and Bacillus Calmette-Guérin. Journal of Nanobiotechnology 10: 19. http://doi.org/10.1186/1477-3155-10-1910.1186/1477-3155-10-19
Information
  • Publisher :The Korean Society for Agricultural Machinery
  • Publisher(Ko) :한국농업기계학회
  • Journal Title :Journal of Biosystems Engineering
  • Journal Title(Ko) :바이오시스템공학
  • Volume : 43
  • No :4
  • Pages :394-400
  • Received Date :2018. 09. 28
  • Accepted Date : 2018. 11. 11