All Issue

2018 Vol.43, Issue 4 Preview Page

December 2018. pp. 410-419
Abstract


References
1 

Ahn, K. S., G. S. Lee, K. H. Lee, M. K. Song, S. C. Lim and G. H. Kim. 2011. Susceptibility of North American planthopper, Metcalfa pruinosa to commercially registered insecticides in Korea. The Korean Journal of Pesticide Science 15(3): 329-334 (In Korean, with English abstract).

2 

Andrewartha, H. G. and L. C. Birch. 1954. The Distribution and Abundance of Animals, Chicago, IL, USA: University of Chicago Press.

10.1086/401497
3 

Bale, J. S., G. J. Masters, I. D. Hodkinson, C. Awmack, T. M. Bezemer, V. K. Brown, J. Butterfield, A. Buse, J. C. Coulson, J. Farrar, J. E. Good, R. Harrington, S. Hartley, T. H. Jones, R. L. Lindroth, M. C. Press, I. Symrnioudis, A. D. Watt and J. B. Whittaker. 2002. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology 8(1): 1-16.

10.1046/j.1365-2486.2002.00451.x
4 

Barry, S. and J. Elith. 2006. Error and uncertainty in habitat models. Journal of Applied Ecology 43(3): 413-423.

10.1111/j.1365-2664.2006.01136.x
5 

Bennett, S. J., N. Said and D. Enneking. 1998. Modelling climatic similarities in Mediterranean areas: a potential tool for genetic resources and breeding programmes. Agriculture, Ecosystems & Environment 70(2-3): 129-143.

10.1016/s0167-8809(98)00121-2
6 

Burgman, M. A., D. B. Lindenmayer and J. Elith. 2005. Managing landscapes for conservation under uncertainty. Ecology 86(8): 2007-2017.

10.1890/04-0906
7 

Busby, J. R. 1991. BIOCLIM-a bioclimate analysis and prediction system. Plant Protection Quarterly 6: 8-9.

8 

Byeon, D. H., J. M. Jung, S. Jung and W. H. Lee. 2018. Prediction of global geographic distribution of Metcalfa pruinosa using CLIMEX. Entomological Research 48(2): 99-107.

10.1111/1748-5967.12253
9 

Byeon, D. H., J. M. Jung, S. Lohumi, B. K. Cho, S. Jung and W. H. Lee. 2017. Predictive analysis of Metcalfa pruinosa (Hemiptera: Flatidae) distribution in South Korea using CLIMEX software. Journal of Asia-Pacific Biodiversity 10(3): 379-384.

10.1016/j.japb.2017.06.004
10 

Dixon, A. F. G. 1998. Aphid Ecology, 2nd edn., London., UK: Chapman & Hall.

11 

Elith, J. and J. R. Leathwick. 2009. Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics 40(1): 677-697.

10.1146/annurev.ecolsys.110308.120159
12 

GBIF.org (29th February 2016) GBIF Occurrence Download

10.15468/dl.ywhpmz
13 

Gurevitch, J. and D. K. Padilla. 2004. Are invasive species a major cause of extinctions?. Trends in Ecology & Evolution 19(9): 470-474.

10.1016/j.tree.2004.07.005
14 

Hallgren, W. S. and A. J. Pitman. 2000. The uncertainty in simulations by a Global Biome Model (BIOME3) to alternative parameter values. Global Change Biology 6(5): 483-495.

10.1046/j.1365-2486.2000.00325.x
15 

Hamby, D. M. 1994. A review of techniques for parameter sensitivity analysis of environmental models. Environmental Monitoring & Assessment 32(2): 135-154.

10.1007/bf00547132
16 

Hanspach, J., I. Ku¨hn, O. Schweiger, S. Pompe and S. Klotz. 2011. Geographical patterns in prediction errors of species distribution models. Global Ecology and Biogeography 20(5): 779-788.

10.1111/j.1466-8238.2011.00649.x
17 

Hoffman, E. O. and R. H. Gardner. 1983. Evaluation of Uncertainties in Environmental Radiological Assessment Models. In: Radiological Assessments: A Textbook on Environmental Dose Assessment, eds. J. E. Till and H. R Meyer, 11.1-11.47. Washington, DC, USA: Nuclear Regulatory Commission.

18 

Jung, J. M., S. Jung, M. R. Ahmed, B. K. Cho and W. H. Lee. 2017a. Invasion risk of the yellow crazy ant (Anoplolepis gracilipes) under the Representative Concentration Pathways 8.5 climate change scenario in South Korea. Journal of Asia-Pacific Biodiversity 10(4): 548-554.

10.1016/j.japb.2017.08.004
19 

Jung, J. M., J. W. Lee, C. J. Kim, S. Jung and W.H. Lee. 2017b. CLIMEX-based Analysis of Potential Geographical Distribution of Aedes albopictus and Aedes aegypti in South Korea. Journal of Biosystems Engineering 42(3): 217-226.

10.5307/JBE.2017.42.3.217
20 

Jung, J. M., W. H. Lee and S. Jung. 2016. Insect distribution in response to climate change based on a model: Review of function and use of CLIMEX. Entomological Research 46(4): 223-235.

10.1111/1748-5967.12171
21 

Kim, D. E. and J. Kil. 2014. Occurrence and host plant of Metcalfa pruinosa (Say) (Hemiptera: Flatidae) in Korea. Journal of Environmental Science International 23(8): 1385-1394.

10.5322/jesi.2014.23.8.1385
22 

Kim, Y. E., M. Y. Kim, K. J. Hong and S. H. Lee. 2011. Outbreak of an exotic flatid, Metcalfa pruinosa (Say) (Hemiptera: Flatidae), in the capital region of Korea. Journal of Asia-Pacific Entomology 14(4): 473-478.

10.1016/j.aspen.2011.06.002
23 

Kriticos, D. J., G. F. Maywald, T. Yonow, E. J. Zurcher, N. I. Herrmann and R. W. Sutherst. 2015. CLIMEX Version 4: Exploring The Effects of Climate on Plants, Animals and Diseases. Canberra, Australia: CSIRO.

24 

Lapointe, S. L. and J. P. Shapiro. 1999. Effect of soil moisture on development of Diaprepes abbreviatus (Coleoptera: Curculionidae). Florida Entomologist 82(2): 291-299.

10.2307/3496582
25 

Lee, C. B. and J. C. Kim. 2007. Aspect and cause of long term trend of climate in Ulleungdo and Dokdo Area. Korean Journal of Nature Conservation 1(1): 19-28 (In Korean, with English abstract).

26 

Lee, W.-H. and M. R. Okos. 2016. Model-based analysis of IGF-1 effect on osteoblast and osteoclast regulation in bone turnover. Journal of Biological Systems 24(1): 63-89.

10.1142/s0218339016500042
27 

Mainali, K. P., D. L. Warren, K. Dhileepan, A. McConnachie, L. Strathie, G. Hassan, D. Karki, B. B. Shrestha and C. Parmesan. 2015. Projecting future expansion of invasive species: comparing and improving methodologies for species distribution modeling. Global Change Biology 21(12): 4464-4480.

10.1111/gcb.13038
28 

Merow, C., N. LaFleur, J. A. Silander Jr, A. M. Wilson and M. Rubega. 2011. Developing dynamic mechanistic species distribution models: predicting bird-mediated spread of invasive plants acrosss Northeastern North America. The American Naturalist 178(1): 30-43.

10.1086/660295
29 

Pattison, R. R. and R. N. Mack. 2008. Potential distribution of the invasive tree Triadica sebifera (Euphorbiaceae) in the United States: evaluating CLIMEX predictions with field trials. Global Change Biology 14(4): 813-826.

10.1111/j.1365-2486.2007.01528.x
30 

Phillips, S. J. and M. Dudík. 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31(2): 161-175.

10.1111/j.0906-7590.2008.5203.x
31 

Poutsma, J., A. J. M. Loomans, B. Aukema and T. Heijerman. 2007. Predicting The Potential Geographical Distribution of The Harlequin Ladybird, Harmonia axyridis, Using The CLIMEX Model. In: From Biological Control to Invasion: The Ladybird Harmonia Axyridis as A Model Species, eds. H. E. Roy and E. Wajnberg, 103-125. Berlin/Heidelberg, Germany: Springer

10.1007/978-1-4020-6939-0_8
32 

Shabani, F. and L. Kumar. 2014. Sensitivity analysis of CLIMEX parameters in modeling potential distribution of Phoenix dactylifera L.. PLoS ONE 9(4): e94867.

10.1371/journal.pone.0094867
33 

Strauss, G. 2010. Pest risk analysis of Metcalfa pruinosa in Austria. Journal of Pest Science 83(4): 381-390.

10.1007/s10340-010-0308-3
34 

Sutherst, R. W. and A. S. Bourne. 2009. Modelling non-equilibrium distributions of invasive species: a tale of two modelling paradigms. Biological Invasions 11(6): 1231-1237.

10.1007/s10530-008-9335-x
35 

Taylor, S. and L. Kumar. 2012. Sensitivity analysis of CLIMEX parameters in modelling potential distribution of Lantana camara L., PLoS ONE 7(7): e40969.

10.1371/journal.pone.0040969
36 

Thacker, J. I., T. Thieme and A.F.G. Dixon. 1997. Forecasting of periodic fluctuations in annual abundance of the bean aphid: the role of density dependence and weather. Journal of Applied Entomology 121(1-5): 137-145.

10.1111/j.1439-0418.1997.tb01383.x
37 

Tortorelli, D. A. and P. Michaleris. 1994. Design sensitivity analysis: overview and review. Inverse Problems in Engineering 1(1): 71-105.

10.1080/174159794088027573
38 

Van Klinken, R. D., B. E. Lawson and M. P. Zalucki. 2009. Predicting invasions in Australia by a Neotropical shrub under climate change: the challenge of novel climates and parameter estimation. Global Ecology and Biogeography 18(6): 688-700.

10.1111/j.1466-8238.2009.00483.x
39 

Webber, B. L., C. J. Yates, D. C. Le Maitre, J. K. Scott, D. J. Kriticos, N. Ota, A. McNeill, J. J. Le Roux and G. F. Midgley. 2011. Modelling horses for novel climate courses: insights from projecting potential distributions of native and alien Australian acacias with correlative and mechanistic models. Diversity and Distributions 17(5): 978-1000.

10.1111/j.1472-4642.2011.00811.x
40 

Zaehle, S., S. Sitch, B. Smith and F. Hatterman. 2005. Effects of parameter uncertainties on the modeling of terrestrial bio-sphere dynamics. Global Biogeochemical Cycles 19(3): GB3020.

10.1029/2004gb002395
Information
  • Publisher :The Korean Society for Agricultural Machinery
  • Publisher(Ko) :한국농업기계학회
  • Journal Title :Journal of Biosystems Engineering
  • Journal Title(Ko) :바이오시스템공학
  • Volume : 43
  • No :4
  • Pages :410-419
  • Received Date :2018. 09. 18
  • Accepted Date : 2018. 11. 15