All Issue

2018 Vol.43, Issue 4 Preview Page
December 2018. pp. 352-361

Purpose: The objective of this study was to develop a multilayer perceptron (MLP) model to estimate solar radiation using a solar module. Methods: Data for the short-circuit current of a solar module and other environmental parameters were collected for a year. For MLP learning, 14,400 combinations of input variables, learning rates, activation functions, numbers of layers, and numbers of neurons were trained. The best MLP model employed the batch backpropagation algorithm with all input variables and two hidden layers. Results: The root-mean-squared error (RMSE) of each learning cycle and its average over three repetitions were calculated. The average RMSE of the best artificial neural network model was 48.13 W·m-2. This result was better than that obtained for the regression model, for which the RMSE was 66.67 W·m-2. Conclusions: It is possible to utilize a solar module as a power source and a sensor to measure solar radiation for an agricultural sensor node.

  1. Atzori, L., A. Iera and G. Morabito. 2010. The Internet of things: A survey. Computer Networks 54(15): 2787-2805. 10.1016/j.comnet.2010.05.010
  2. Bowman, G.E., 1970. The transmission of diffuse light by a sloping roof. Journal of Agricultural Engineering Research 15(2): 100-105.10.1016/0021-8634(70)90081-8
  3. Cabrera, F. J., A. Baille, J. C. López, M. M. González-Real and J. Pérez-Parra. 2009. Effects of cover diffusive properties on the components of greenhouse solar radiation. Biosystems Engineering 103(3): 344-356.10.1016/j.biosystemseng.2009.03.008
  4. Dorvlo, A. S. S., J. A. Jervase and A. Al-Lawati. 2002. Solar radiation estimation using artificial neural networks. Applied Energy 71(4): 307-319.10.1016/S0306-2619(02)00016-8
  5. Elizondo, D., G. Hoogenboom and R. W. McClendon. 1994. Development of a neural network model to predict daily solar radiation. Agricultural and Forest Meteorology 71(1-2): 115-132.10.1016/0168-1923(94)90103-1
  6. Elminir, H. K., F. F. Areed and T. S. Elsayed. 2005. Estimation of solar radiation components incident on Helwan site using neural networks. Solar Energy 79(3): 270-279.10.1016/j.solener.2004.11.006
  7. Fahlman, S. E., 1988. An empirical study of learning speed in back-propagation networks.
  8. Huang, Y., L. Wu and J. Zhu. 2010. Research of fuzzy control system about greenhouse supplement light lamps based on single-chip microcomputer. In: 2010 8th World Congress on Intelligent Control and Automation, Paper No. 11511221. Jian, China: July 201010.1109/WCICA.2010.5555032
  9. Igel, C. and M. Hüsken. 2000. Improving the Rprop learning algorithm. In: Proceedings of the Second ICSC International Symposium on Neural Computation (NC 2000), Berlin, Germany: May 2000.
  10. Kaloxylos, A., R. Eigenmann, F. Teye, Z. Politopoulou, S. Wolfert, C. Shrank, M. Dillinger, I. Lampropoulou, E. Antoniou, L. Pesonen, H. Nicole, F. Thomas, N. Alonistioti and G. Kormentzas. 2012. Farm management systems and the future internet era. Computers and Electronics in Agriculture 89: 130-144.10.1016/j.compag.2012.09.002
  11. Kasten, F. and G. Czeplak, 1980. Solar and terrestrial radiation dependent on the amount and type of cloud. Solar Energy 24(2): 177-189.10.1016/0038-092X(80)90391-6
  12. Kasten, F. and A. T. Young. 1989. Revised optical air mass tables and approximation formula. Applied Optics 28(22): 4735-4738.10.1364/AO.28.004735
  13. Kerr, J. P., G. W. Thurtell and C. B. Tanner. 1967. An Integrating pyranometer for climatological observer stations and mesoscale networks. Journal of Applied Meteorology 6(4): 688-694.10.1175/1520-0450(1967)006<0688:AIPFCO>2.0.CO;2
  14. Kim, J. Y., S.-H. Yang, C. Lee, Y.-J. Kim, H.-J. Kim, S. I. Cho and J. -Y. Rhee. 2012. Modeling of solar radiation using silicon solar module. Journal of Biosystems Engineering 37(1): 11-18.10.5307/JBE.2012.37.1.011
  15. Kim, Y., R. G. Evans and W. M. Iversen. 2008. Remote sensing and control of an irrigation system using a distributed wireless sensor network. IEEE Transactions on Instrumentation and Measurement 57(7): 1379-1387.10.1109/TIM.2008.917198
  16. Kim, Y. H. and S. G. Lee. 1998. Analysis of the transmissiviies of direct and diffuse solar radiation in multispan glasshouse. Journal of Biosystems Engineering 23(5): 439-444 (In Korean, with English abstract).
  17. King, D. L., 1997. Photovoltaic module and array performance characterization methods for all system operating conditions. In: Proceeding of National Renewable Energy Laboratory (NREL) and Sandia National Laboratories (SNL) Photovoltaics Program Review Meeting, Lakewood, New York, USA: November 1996.10.1063/1.52852
  18. King, D. L., W. E. Boyson and J. A. Kratochvil. 2004. Photovoltaic array performance model. SAND 2004-3535. Albuquerque, New Mexico, California, USA: Sandia National Laboratories.
  19. King, D. L. and D. R. Myers. 1997. Silicon-photodiode pyranometers: operational characteristics, historical experiences, and new calibration procedures. In: 26th Photovoltaic Specialists Conference, Paper No. 5900317. Anaheim, California, USA: Spetember 1997.10.1109/PVSC.1997.654323
  20. Klaring, H.-P., C. Hauschild, A. Heißner and B. Bar-Yosef. 2007. Model-based control of CO2 concentration in greenhouses at ambient levels increases cucumber yield. Agricultural and Forest Meteorology 143(3-4): 208-216.10.1016/j.agrformet.2006.12.002
  21. Linker, R. and I. Seginer. 2003. Water stress detection in a greenhouse by a step change of ventilation. Biosystems Engineering 84(1): 79-89.10.1016/S1537-5110(02)00219-2
  22. Malik, A. Q. and S. J. B. H. Damit. 2003. Outdoor testing of single crystal silicon solar cells. Renewable Energy 28(9): 1433-1445.10.1016/S0960-1481(02)00255-0
  23. Mellit, A., M. Menghanem and M. Bendekhis. 2005. Artificial neural network model for prediction solar radiation data: application for sizing stand-alone photovoltaic power system, In: Power Engineering Society General Meeting, pp. 40-44, San Francisco, CA, USA: June, 2005.10.1109/PES.2005.1489526
  24. Nash, E., P. Korduan and R. Bill. 2009. Applications of open geospatial web services in precision agriculture: a review. Precision Agriculture 10: 546-560.10.1007/s11119-009-9134-0
  25. Negnevitsky, M., 2004. Artificial Intelligence: A Guide to Intelligent Systems, 2nd ed, England: Boston.
  26. Parretta, A., A. Sarno and L. R. M. Vicari. 1998. Effects of solar irradiation conditions on the outdoor performance of photovoltaic modules. Optics Communications 153(1-3): 153-163.10.1016/S0030-4018(98)00192-8
  27. Reddy, K. S. and M. Ranjan. 2003. Solar resource estimation using artificial neural networks and comparison with other correlation models. Energy Conversion and Management 44(15): 2519-2530.10.1016/S0196-8904(03)00009-8
  28. Roh, M. Y. and Y. B. Lee. 1996. Control of amount and frequency of irrigation according to integrated solar radiation in cucumber substrate culture. International Symposium on Plant Production in Closed Ecosystems 440: 332-337.10.17660/ActaHortic.1996.440.58
  29. Rosales, M. A., J. M. Ruiz, J. Hernández, T. Soriano, N. Castilla and L. Romero. 2006. Antioxidant content and ascorbate metabolism in cherry tomato exocarp in relation to temperature and solar radiation. Journal of the Science of Food and Agriculture 86(10): 1545-1551.10.1002/jsfa.2546
  30. Seshu, D. V. and F. B. Cady. 1983. Response of rice to solar radiation and temperature estimated from international yield trials. Crop Science 24(4): 649-654.10.2135/cropsci1984.0011183X002400040006x
  31. Sfetsos, A. and A. H. Coonick. 2000. Univariate and multivariate forecasting of hourly solar radiation with artificial intelligence techniques. Solar Energy 68(2): 169-178.10.1016/S0038-092X(99)00064-X
  32. Sun, Y., L. Li, P. Schulze Lammers, Q. Zeng, J. Lin and H. Schumann. 2009. A solar-powered wireless cell for dynamically monitoring soil water content. Computers and Electronics in Agriculture 69(1): 19-23.10.1016/j.compag.2009.06.009
  33. Vellidis, G., M. Tucker, C. Perry, C. Kvien and C. Bednarz. 2008. A real-time wireless smart sensor array for scheduling irrigation. Computers and Electronics in Agriculture 61(1): 44-50.10.1016/j.compag.2007.05.009
  34. Wang, N., N. Zhang and M. Wang. 2006. Wireless sensors in agriculture and food industry—Recent development and future perspective. Computers and Electronics in Agriculture 50(1): 1-14.10.1016/j.compag.2005.09.003
  35. Whillier, A., 1964. A Simple, accurate, cheap integrating instrument for measuring solar radiation. Solar Energy 8(4): 134-136.10.1016/0038-092X(64)90075-1
  36. Yoo, H.-C., K.-H. Lee and S.-H. Park. 2008. Analysis of data and calculation of global solar radiation based on cloud data for major cities in korea. Journal of the Korean Solar Energy Society 28(4): 17-24 (In Korean, with English abstract)
  • Publisher :The Korean Society for Agricultural Machinery
  • Publisher(Ko) :한국농업기계학회
  • Journal Title :Journal of Biosystems Engineering
  • Journal Title(Ko) :바이오시스템공학
  • Volume : 43
  • No :4
  • Pages :352-361
  • Received Date :2018. 11. 14
  • Accepted Date : 2018. 11. 29